
N. Reynolds and M. Turcsányi-Szabó (Eds.): KCKS 2010, IFIP AICT 324, pp. 155–164, 2010.
© IFIP International Federation for Information Processing 2010

Conditions for Successful Learning
of Programming Skills

Jaana Holvikivi

Helsinki Metropolia University of Applied Sciences
jaana.holvikivi@metropolia.fi

Abstract. First programming courses often fail to motivate students to continue
their software studies. Students find it hard to acquire the logic of computer
programming. Especially students in multicultural, heterogeneous student
groups are unable to apply logical thinking consistently or to follow instructions
in a systematic fashion. Transfer of thinking skills from mathematics to pro-
gramming does not take place as expected. Efforts to describe the thinking
process in program authoring have failed, and process of problem solving in
program design remains as evasive as heuristic processes in general. Evidently,
it is based on accumulated expert knowledge that is not easily describable. Pro-
gramming is an independent domain of expert knowledge that requires system-
atic practice and self-monitoring in construction of appropriate mental patterns.

Keywords: programming skills, computer science education, expert knowl-
edge, mental patterns.

1 Introduction

Learning fundamental programming skills has been found to be difficult and the in-
herent difficulties are hard to analyze [1], [2]. Research in computer science education
has attempted to find efficient ways to teach programming, thus far with limited suc-
cess. Undeniably, several good programming languages for beginners, as well as
software and methods to assist in classroom practice have been developed. Neverthe-
less, none has claimed universal acceptance and the outcome of first programming
courses often remains disappointing [3], [4], [5].

A growing body of research has attempted to investigate the learning process of an
individual student in programming courses in order to trace common obstacles and
misconceptions. Studies on individual learners, on one hand [2], and comparisons of
large student populations [6], on the other hand, have been conducted. The results are,
however, inconclusive. The present study attempts to shed light on the underlying
conditions in learning programming. First, the current understanding in programming
education research is presented, enhanced by insights from cognitive science. Second,
a study on student analytical thinking abilities and programming is described, and its
findings are compared with ethnographic data on classroom practice. Finally, the
results are discussed, and a comprehension of how programming thinking is learnt
based on cognitive abilities and accumulation of expert knowledge is outlined.

156 J. Holvikivi

2 Programming Instruction and Thinking Skills

There is a considerable agreement in the literature that students experience many
difficulties in learning to program [4], [5], [6]. For instance, an ACM/ICER working
group 2001 reported on beginning computing students’ inability to program [7]. The
authors tested first year students in several universities in the US and other countries
on a common set of programming problems, and the majority of students performed
more poorly than expected. The research did not reveal what the principal reasons
behind failures were: whether they were caused by fragile knowledge and skills or by
poor problem-solving skills. An extensive follow-up research [1] aimed at determin-
ing what strategies are likely to lead to success versus those that are likely to lead to
failure in program code tracing. The findings indicate that successful and failing
students do not actually employ different kinds of approaches, or higher or lower
order thinking skills. Most students used multiple strategies in working on a given
question, different strategies were used for different questions, and many strategies
that were used successfully by certain students would be used incorrectly or unsuc-
cessfully by other students. Success was determined not just by which strategies were
employed but rather by how well the particular strategies were employed.

Computer science education can be improved by various means, including devel-
opment of learning tools, pedagogical methods, and the curriculum. One of the central
questions concerns the choice of the initial programming language for the first CS
course, which is commonly believed to be crucial for later learning and motivation in
software studies [5]. Whether to start with algorithmic or object-oriented program-
ming, or other tools and methods is eagerly debated. Accordingly, many different
languages have their supporters: Ada, Pascal, C, Java, PHP, JavaScript, and Python
[3], as well as visual aids and building-block kind of tools [5], [6], to mention some.
One view that is strongly supported by students favors development environments and
powerful languages that are used commercially, whereas an opposing view stresses
development of thinking skills, particularly algorithmic thinking. Educators agree,
however, that students need to learn a programming way of thinking, which is more
than just knowing the syntax and semantics of a language. Moreover, other subjects in
computer science such as databases and networks are complex and conceptually
demanding, and understanding them requires abstract thinking and good problem-
solving skills.

Many innovative approaches have been developed to aid beginner programmers.
Stein [8] has introduced a view of "computing as interaction": event-based and object-
oriented thinking. Her method uses Java in the introductory course, emphasizing the
user-computer interaction that is central in modern networked environments. Raden-
ski [3] has developed a "Python first, Java second” program that according to his
surveys has gained popularity among students. Python comes first because its relative
simplicity and Java second to offer features that are more powerful. The program
includes a considerable amount of actual practice and supporting materials. In addi-
tion, several projects have utilized visualization of program elements [5], [6].

Eckerdal & Berglund [9] concentrate in object-oriented programming thinking in
their study because they found that their students had difficulties in it and in describ-
ing it when interviewed. The object-oriented paradigm is built on a set of abstract
concepts. Students need to reach a certain level in their understanding in order to be

 Conditions for Successful Learning of Programming Skills 157

able to use the concepts for analysis and design in object-oriented programming tasks.
However, there are ways for educators to assist students to reach such understanding.
The researchers suggest that these may include problem-solving skills and a system-
atic way of thinking, as well as thinking about learning, that is, metacognitive skills.

The supposition that higher level thinking skills influence programming ability is
based on the idea of transfer of skills from one cognitive domain to another. However,
how far this is applicable and whether transfer exists is somewhat debatable. Recent
neuroscientific research has tackled the question of transference of learnt skills in the
brain. The results have thus far been less promising for educators: transfer of simple
cognitive skills does not seem to take place, on the contrary, each task needs a new
training [10], [11], [12]. However, this result has thus far been found on simple tasks
only; higher level skills are still beyond the means of cognitive science and brain
scanning, in particular. The common methodology in cognitive psychology is to
isolate cognitive mechanisms. In order to study them in laboratory setting and to
measure the results, cognitive processes have to be split into tiny parts. In reality,
however, learning complex ideas depends on recruiting multiple cognitive, as well as
social and motivational mechanisms and resources [10].

Vainio & Sajaniemi [2] have noticed that novice programmers have poor program
tracing skills. They describe programming as a process that includes program author-
ing, design, program comprehension, debugging, etc. These tasks occur often in a
highly overlapping fashion, for instance, program debugging requires program com-
prehension and detailed tracing, specifically, mental simulation of program execution.
Vainio conducted exploratory interviews that included program comprehension tasks
with a group of novice students. He then analyzed comprehension protocols to iden-
tify specific difficulties affecting novices’ ability to trace programs. The study found
that students had four kinds of specific difficulties with program tracing: single value
tracing, confusing function and structure, inability to use external representations, and
inability to raise the level of abstraction.

 Programmers are able to hold programs only partially in their memory because of
the very limited capacity of human working memory [2]. The paradox in the function-
ing of the brain is the contrast between the enormous capacity of long-term memory
and the narrow pipeline of executive functions. The organization of the brain is far
from the organization of disk storage, or any kind of modular storage of information
rather, it resembles a complex and dynamic network where many modalities collabo-
rate [13], [14]. The brain is highly analogical and parallel in its activities. For in-
stance, much of language processing takes place in a so-called Broca's area, which
together with the premotor cortex links language processing with visual perception
and motor activity [14]. Writing is in itself a complex thinking process, and the same
applies to coding. The physical writing activity, which is a motor process, enhances
learning results.

Conscious activity is severely limited by the executive function that controls work-
ing memory. Conscious processing has a narrow pipeline where the processing is
serial, which prevents multitasking. The executive function is vulnerable to distrac-
tion, as well. Because of the limited capacity of working memory, we cannot hold
long, complex ideas or code fragments in our heads as long as we understand them as
separate data. As soon as we learn patterns and algorithms and create mental models

158 J. Holvikivi

of them, we can tackle tasks that are more complex. Mental models or external tools
help us structure ideas [15], [16].

Moreover, humans are not able to accurately report their thinking processes [17],
[18]. Many studies show that thinking process actually changes when a person tries to
report her thinking. Particularly heuristic problem-solving evades awareness. The
evidence of many studies strongly suggests that people frequently generate a solution
without knowing it [19]. Similarly, when they learn a new strategy to solve problems,
it seemingly occurs outside awareness. Insight problems are solved nonconsciously,
sometimes during sleep or apparently idle moments [20].

3 Methods

The preliminary data for the present analysis was gathered through a set of surveys
among information technology students at a university of applied sciences in the
Helsinki area in Finland. The student population consists of over 30 nationalities;
predominantly male students. The surveys included questions on study habits, experi-
ences, and difficulties in learning computer science. 124 students participated in the
surveys, out of whom 62 responded to a paper-based questionnaire in the classroom
and 62 answered to an on-line questionnaire. This data was subsequently compared to
course results (examinations and assignment work) of introductory computer science
courses. Further explanations were sought through ethnographic observation data
from six years' field work. The ethnographic data included field notes on classroom
activity, particular emphasis being in unexpected incidents and difficulties. As course
work was replicated yearly with new student populations, certain patterns started to
emerge. Additionally, students produced learning logs and team work reports, which
were analyzed as regards their own perception of their learning. The research process
and data are described in detail in the doctoral thesis by Holvikivi [21].

Additionally, two specific studies were conducted to test logical thinking, which
was considered an essential component in programming. The first questionnaire tested
verbal logic and mathematical reasoning (135 respondents), and the second test com-
pared logical thinking skills with knowledge of Boolean logic acquired in digital
circuits courses. The findings of the first study are presented in detail in Holvikivi
[22]. The second test was a short questionnaire that was given out in the classroom,
and included Boolean operations, four logical syllogisms, and two other reasoning
tasks. 45 students of 16 nationalities answered the questions. The results of this test
are described below.

4 Findings

The transfer of learning from one course to another turned out to be extremely low in
this study. Especially mathematical skills were not fully applied in other contexts.
Even arithmetic calculations by students who had passed basic mathematics courses
failed in the context of other testing situations (overall 50 % success rate). Failure in
number system conversions was even more dramatic, with a success rate of 37 %. The
connection of mathematical operations and calculation to problem-solving seemed to

 Conditions for Successful Learning of Programming Skills 159

be lost for half of the students, which could be explained by mechanical learning and
lack of deep understanding [23].

4.1 Logical Reasoning

The results of applying logical thinking in syllogisms and reasoning tasks in tests
indicated that logical skills are by no means transferable between different types of
reasoning [22]. For instance, training in Boolean logic did not help in solving syllo-
gisms. In fact, the group that had not received training in binary logic performed best.
The test included Boolean AND and OR operations, four logical syllogisms, and one
other reasoning task. The results (Table 1) show that 69% of respondents succeeded
in Boolean operations, but only 37% gave correct answers to the verbal tasks, syllo-
gisms. Thus, about half of those who mastered basic mathematical logic failed in
verbal reasoning.

Table 1. Number of correct answers in the second logic test

 Total respondents 45 (Men 40, Women 5)

 Syllogisms: 4 correct 6 13%
 3 correct 11 24%
 0, 1 or 2 correct 28 62%
 Boolean AND and OR correct 31 69%

A closer look at reasoning studies in general points to the same conclusion: a rea-

soning task often produces results that are task-dependent or context-dependent, and
predicting the outcome from previously performed tasks seldom succeeds amongst
untrained subjects [12].

4.2 Working with Instructions

Additionally, coding success is not only dependent on abstract thinking but also on
systematic working patterns. Coding requires an ability to follow instructions accu-
rately. Observations at our university indicate that when inexperienced students work
with laboratory assignments they might follow instructions in somewhat random
order instead of from beginning to end. Assignments, such as creating Excel sheets or
typing Linux command line instructions in order to create and copy files, always
proceed stepwise. A command line interface requires discipline from the student, and
the task leads to chaos when the order of commands is changed, or the student skips
some steps or starts from the middle of the exercise. Students who type in incorrect
order, and do not follow on the screen what happens, cannot comprehend whether
they get an approval (which is seldom indicated by the system) or an error message.
The communication process with the computer fails in these cases because a human
person is not accustomed to purely formal and very sparse communication by the
computer system, and might not even feel that it is a communication situation. [21]

160 J. Holvikivi

The surveys that we conducted among students revealed that especially immigrant
students feel shortcomings in communication in general: more than half of the foreign
respondents reported that they found directions unclear whereas home national
students had no problems of this kind. This difficulty was particularly connected to
laboratory assignments, as up to 65 % of the foreign respondents stated that they often
failed to understand instructions. However, the failure to understand instructions did
not directly correspond with the English proficiency of the student, even though 20%
of students reported language difficulties as well. The failure to understand seems to
be connected to the procedural style of the instruction, and perhaps to the unwritten
assumptions of what a student is expected to understand without being told [21].

 Moreover, some immigrant students come from cultures with a strong oral tradi-
tion such as the Somali culture [24]. They prefer personal communication, which can
be observed in regular visits to teachers' offices. Students who find it difficult to work
based on written instructions would probably benefit from an apprenticeship mode of
learning. The instruction at Finnish universities relies strongly on mediating artifacts,
such as written or on-line materials. Finnish and other Western students are accus-
tomed to a textual learning environment, which could be described as a "paper-trail"
way of working (discussed by Teräs [25]). It pertains to their behavioral patterns, and
papers (or documents on computer) are essentially integrated in the work.

4.3 Code Tracing and Programming

Students often attempt to find a solution intuitively in code tracing tasks, in spite of
being told to emulate a computer (this phenomenon was also observed in [1] and [2]).
They apply knowledge of natural language that involves concluding from partial in-
formation and filling in gaps. Moreover, failure in code tracing tasks indicates a lack
of student capability in monitoring one's thinking process.

Additionally, code tracing and error detecting is more difficult for students who
have spelling problems. Students who did not study alphabetic languages as their first
language, such as Amharic or Nepalese speakers, are particularly afflicted by this
impediment [21]. They are unable to "see errors" in punctuation and spelling when
proofreading their texts or codes.

In addition to programming concepts that have been discussed above, such as pro-
cedural, object-oriented and event-based thinking, we have noticed difficulties in
grasping many other fundamental concepts in information technology: the organiza-
tion of file systems, local and global networks, relational and hierarchical data base
structures, client-server architecture, and so on.

The previous schooling experience of immigrant students may consist mainly of
teacher-led lectures that require memorizing of presented material. The laboratory
setting might be a completely new kind of classroom environment, and students lack a
model for controlling their work in it. If the student's schoolwork schema consists
only of teacher speaking and student listening, she may have adopted a recipe-type
learning pattern: do as told and repeat it without reflection. However, creative think-
ing is needed even in simple programming, which is displayed by the variety of
solutions to most trivial tasks. A short piece of programming code, a tiny database
table or XML structure – whatever it is, each student brings a unique solution! The
ability to create new solutions is connected to the ability to apply theory to practice. It

 Conditions for Successful Learning of Programming Skills 161

is a skill that has to be explicitly taught, and evidently, different educational systems
produce it differently. As any other skill, it is developed by constant practice.

On the other hand, the application of object-oriented thinking has proven to be less
challenging than in earlier studies. We have applied it in naturally occurring settings,
namely manipulating parts of CSS, HTML or XML documents. The Document Ob-
ject Model that is used in these languages has proven to be intuitive and the results of
applying it are immediately visible on the HTML page. Therefore, teaching
JavaScript as the first programming language has certain advantages in this respect, in
addition to being motivating because of its easy syntax and applicability on Web. Our
course program is partially based on Snyder’s textbook [26]. Flowcharts in simple
program design act as thinking tools and help in code tracing practice. Alternatively,
XML structures and XSLT programming are also relatively easy to learn, if they are
approached step-by-step proceeding from simple to more complex structures. XSLT
is such a high level language that it allows concentration on structures without a need
to worry about syntax details. Unfortunately, it is too specific to be used for a general
introduction to programming.

5 Discussion

The variety of difficulties in programming thinking is disturbing. Success in learning
programming seems to depend on general problem-solving abilities, student cognitive
capacity, and analytical intelligence. If the fact is that good students are successful,
what remains to be done by educators? Obviously, it is more difficult to improve the
outcome, if no particular recipe or optimal working strategy can be identified. An
important research finding regarding higher-level expertise has been that an individ-
ual's ability to develop his or her content-specific knowledge and apply it in varying
situations often co-evolves with the development of general thinking skills and meta-
cognitive strategies [19], [27]. Thus, to have better students, we need to improve their
thinking and learning skills, and self-regulation.

Self-reflection and conscious monitoring of progress are important in improving
practice. The development of expertise takes place through the deepening mastery of
problem-solving processes. Studies on chess masters have shown that they have men-
tal models of a huge number of chess patterns and remember locations of pieces in
them effortlessly [15]. Similarly, jazz pianists have developed a large repertoire of
tunes. Programmers have a set of solutions and structures in their mind, as well [2].
The central role of practice and ability to apply theoretical knowledge has also been
observed in this study. Students need time and sufficient practice in various problems
to build mental patterns of software structures.

Moreover, a certain amount of functional understanding of processes, in addition to
technical skills, is a prerequisite for successful software engineering work [28]. Visual
aids, graphs and animations help in modeling processes and structures. Additionally,
understanding abstract concepts and capability in algorithmic thinking are required.
Understanding computers requires an understanding of formal systems. In formal
systems, a set of phenomena is encoded as symbols, and the symbols are manipulated
by reference to their form only. The meanings of symbols are not interpreted while
they are being manipulated [29].

162 J. Holvikivi

The difficulties in logical reasoning that were noticed in this study can be ex-
plained with the organization of cognitive functions in the brain. Reasoning probably
consists of several skills that are located separately in the brain. Recent fMRI studies
indicate that brain uses different regions and networks for mathematical functions and
verbal functions, different regions for enumeration and calculation, for economical
decision-making and social decision-making, and so forth [30], [31], [32]. Whether
programming logic is processed in the brain predominantly as a mathematical prob-
lem-solving task, as a verbal task, or even as a visuo-spatial task, is not known, but
would certainly be worth studying.

6 Conclusions

When we learn, we build on existing patterns and schemas in our minds. Learning is
easier when we have relevant experience and schemas that are applicable in the par-
ticular context. Accumulation of programming expertise is a continuous process of
constructing new, useful patterns in the mind to be called on demand.

The traditional knowledge of introducing an easy language first [3] has once again
found support from the present research findings. Students need to be allowed to
concentrate on the essential patterns, and all additional details should be kept to a
minimum, as student capacity to learn is always severely constrained by limitations of
the brain. With a simple syntax language, students are allowed to concentrate on the
problem-solving aspect, instead of being forced to struggle with a layer of initializa-
tions and definitions. Moreover, easy languages often offer fun and enjoyment of
learning that motivates students.

Students must have certain basic abilities when they start learning programming.
These include mental schemas in regard to procedural thinking and action, functional
understanding of processes, and a comfortable relationship to technological artifacts.
Knowledge construction takes place through a self-monitoring, intelligent practice
that accumulates skills in small increments. In sum, learning programming follows the
same patterns as any other domain of expert knowledge. The skill is built on previous
experiences and abilities, and requires substantial practice.

References

1. Fitzgerald, S., Simon, B., Thomas, L.: Strategies that Students Use to Trace Code: an
Analysis Based in Grounded Theory. In: Proc. of ICER 2005, pp. 69–80. ACM Press, New
York (2005)

2. Vainio, V., Sajaniemi, J.: Factors in Novice Programmers’ Poor Tracing Skills. In: Proc. of
ITiCSE 2007. ACM, New York (2007)

3. Radenski, A.: “Python first”: a Lab-Based Digital Introduction to Computer Science. In:
Proc. of 11th ITICSE (2006)

4. Webber, C.G., Possamai, R.: An Immune-based Approach to Evaluate Programming
Learning. In: 9th IFIP World Conference on Computers in Education (2009)

5. Koscianski, A., Bini, E.: Tackling Barriers in the Learning of Computer Programming. In:
9th IFIP World Conference on Computers in Education (2009)

 Conditions for Successful Learning of Programming Skills 163

6. Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M.: 2005 A Study of the Difficulties of Novice
Programmers. In: Proc. of ITiCSE 2005. ACM, New York (2005)

7. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagen, D., Kolikant, Y., Laxer, C.,
Thomas, L., Utting, I., Wilusz, T.: A Multi-National, Multi-Institutional Study of Assess-
ment of Programming Skills of First-Year CS Students. ACM SIGCSE Bulletin 33(4),
125–140 (2001)

8. Stein, L.A.: The Rethinking CS101 Project, http://www.cs101.org/
9. Eckerdal, A., Berglund, A.: What Does it Take to Learn ‘Programming Thinking’? In:

Proc. of ICER 2005, pp. 135–142. ACM Press, New York (2005)
10. Schwartz, D.L., Martin, T., Nasir, N.: Designs for Knowledge Evolution: Towards a Pre-

scriptive Theory for Integrating First- and Second-Hand Knowledge. In: Gärdenfors, P.,
Johansson, P. (eds.) Cognition, Education, and Communication Technology, pp. 21–54.
Lawrence Erlbaum Associates, Mahwah (2005)

11. Dos Santos Sequiera, S., Specht, K., Hämäläinen, H., Hugdahl, K.: The Effects of Back-
ground Noise on Dichotic Listening to Consonant-vowel Syllables. Brain and Lan-
guage 107, 11–15 (2008)

12. Stanovich, K.: The fundamental computational biases in human cognition. In: Davidson,
J.E., Sternberg, R. (eds.) The Psychology of Problem Solving, pp. 291–342. Cambridge
University Press, Cambridge (2003)

13. Kandel, E.: The new science of mind. Scientific American Mind 17(2), 62–69 (2006)
14. Kalat, J.W.: Biological Psychology, 8th edn. Thomson Wadsworth, Belmont (2004)
15. Ericsson, K.A.: The Acquisition of Expert Performance as Problem Solving. Construction

and Modification of Mediating Mechanisms through Deliberate Practice. In: Davidson,
J.E., Sternberg, R. (eds.) The Psychology of Problem Solving, pp. 31–83. Cambridge Uni-
versity Press, Cambridge (2003)

16. Neuroscience and Education. Issues and Opportunities. A Commentary by the Teaching
and Learning Research Programme. University of London (2007)

17. Scherer, K.S.: Feelings Integrate the Central Representation of Appraisal-Driven Response
Organization in Emotion. In: Manstead, A.S.R., Frijda, N., Fischer, A. (eds.) Feelings and
Emotions. The Amsterdam Symposium, pp. 136–157. Cambridge University Press, Cam-
bridge (2004)

18. Wittgenstein, L.: Philosophical Investigations: The German Text with a Revised English
Translation: German Text, with a Revised English Translation, 3rd rev. edn. Blackwell
(January 2002) (1953)

19. Davidson, J.E., Sternberg, R. (eds.): The Psychology of Problem Solving. Cambridge
University Press, Cambridge (2003)

20. Frith, C.: Making up the Mind: How the Brain Creates our Mental World. Blackwell Pub-
lishing, Oxford (2007)

21. Holvikivi, J.: Culture and Cognition in Information Technology Education. Helsinki
University of Technology. SimLab Publications. Dissertation series: 5. Espoo (2009)

22. Holvikivi, J.: Logical Reasoning Ability in Engineering Students: A Case Study. IEEE
Trans. Educ. 50(4), 367–372 (2007)

23. Hannula, M.S.: Affect in Mathematical Thinking and Learning. Annales Universitatis
Turkuensis B 273, Turku, Finland (2004)

24. Alitolppa-Niitamo, A.: The Icebreakers. Somali-speaking Youth in Metropolitan Helsinki
with a Focus on the Context of Formal Education. The Family Federation of Finland, The
Population Research Institute. D42/2004 (2004)

25. Teräs, M.: Intercultural Learning and Hybridity in the Culture Laboratory. Dissertation.
University of Helsinki, Department of Education (2007)

164 J. Holvikivi

26. Snyder, L.: Fluency with Information Technology. Skills, Concepts, Capabilities. Pearson,
London (2006)

27. Kirsch, D.: Metacognition, Distributed Cognition, and Visual Design. In: Gärdenfors, P.,
Johansson (eds.) Cognition, Education, and Communication Technology, pp. 147–179.
Lawrence Erlbaum Associates, Mahwah (2005)

28. Moss, J., Kotovsky, K., Cagan, J.: The Role of Functionality in The Mental Representa-
tions of Engineering Students: Some Differences in the Early Stages of Expertise. Cogni-
tive Science 30, 65–93 (2006)

29. Hutchins, E.: Cognition in the Wild. MIT Press, Cambridge (1995)
30. Polk, T.A., Farah, M.J.: The Neural Development and Organization of Letter Recognition:

Evidence from Functional Neuroimaging, Computational Modeling, and Behavioral Stud-
ies. Proc. Natl. Acad. Sci. USA 95(3), 847–852 (1998)

31. Masataka, N., Ohnishi, T., Imabayashi, E., Hirakata, M., Matsuda, H.: Neural Correlates
for Learning to Read Roman Numerals. Brain and Language 100, 276–282 (2007)

32. Tang, Y., Zhang, W., Chen, K., Feng, S., Ji, Y., Shen, J., Reiman, E., Liu, Y.: Arithmetic
Processing in the Brain Shaped by Cultures. Proc. Natl. Acad. Sci. USA 103(28), 10775–
10780 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

